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a b s t r a c t

The relation between the discrete time Lainiotis filter on the one side and the golden

section and the Fibonacci sequence on the other is established. As far as the random

walk system is concerned, the relation between the Lainiotis filter and the golden

section is derived through the Riccati equation since the steady state estimation error

covariance is related to the golden section. The relation between the closed form of the

Lainiotis filter and the Fibonacci sequence is also derived. It is shown that the steady

state Lainiotis filter computes the state estimate using a linear combination of the

previous estimate and of the current measurement with coefficients related to the

golden section. A Finite Impulse Response (FIR) implementation of the steady state

Lainiotis filter is also proposed, where the filter computes the state estimate as a linear

combination of a well-defined set of the last measurements with coefficients which are

powers of the golden section. Finally, the scalar generic stochastic dynamic system is

considered and the relation between its parameters and the golden section is

investigated.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Although the connection between the golden section
and Fibonacci numbers with nature, arts and architecture
is known for centuries, there is presently a huge interest
of modern sciences in these classical theories. Particularly,
researchers in the computer science (measurement the-
ory and communication systems [14]) and cryptography
[12] exhibit a substantial interest in these classical the-
ories and use them in order to model phenomena in their
field. The above are only a few applications of the golden
section and the Fibonacci numbers that imply a new
mathematical direction which is the creation of a fasci-
nating and beautiful subject of the ‘‘Mathematics of
Harmony’’ [13].
ll rights reserved.
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Filtering plays an important role in many fields of
science: applications to aerospace industry, chemical
process, communication systems design, control, civil
engineering, filtering noise from 2-dimensional images,
pollution prediction and power systems are mentioned in
[1]. In the field of signal processing, measurements are
available containing the signal and the noise and the task
is to produce an estimate of the signal through processing
of the measurements by a filter. In this area the discrete
time Kalman filter [1,8] and Lainiotis filter [9,10] are well-
known algorithms that solve the filtering problem. Lai-
niotis filter uses the ‘‘partitioning approach’’ to estimation
leading to robust, computationally effective and fast
filtering algorithms [10]. The two filters are equivalent
to each other [3] since they compute theoretically the
same estimations. A key difference between the two
filters is the fact that Kalman filter computes the estima-
tion through prediction, while Lainiotis filter computes
the estimation through smoothing. Another difference is
that in the Kalman filter case the initial state has a
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Gaussian probability density function (pdf), while in the
Lainiotis filter case the pdf could be also non-Gaussian [11].
Which time invariant filter is faster depends on the relation
between the state and measurement dimensions: in fact
Kalman filter is faster than Lainiotis filter in multi-state
problems (the state dimension is enough greater than the
measurement dimension), while Lainiotis filter is faster
than Kalman filter in the multi-sensor problems (the
measurement dimension is enough greater than the state
dimension), as for instance the multi-sensor systems with
many sensing devices are considered in the seismic proces-
sing, see [3].

Recently, the relation between the discrete time
Kalman filter and the golden section is established [4,5].
The novelty of the paper is to establish the relation
between the discrete time Lainiotis filter on the one side
and the golden section and the Fibonacci sequence on the
other. In fact, the relation between the discrete time
Lainiotis filter and the golden section is described for
the scalar generic stochastic dynamic system; similar
relation has been described for the Kalman filter assuming
scalar systems with special output coefficient (equal to
one). It is also shown that the prediction/estimation/
smoothing error covariances are related to the golden
section. Finally, a FIR implementation of the steady state
Lainiotis filter is proposed, where the filter coefficients are
powers of the golden section.

The paper is organized as follows: In Sections 2 and 3 a
brief review of the golden section and the Fibonacci
sequence, respectively, is presented while in Section 4
the discrete time Lainiotis filter is presented. In Section 5
the random walk system is considered. The relation
between the discrete time Lainiotis filter and the golden
section is established through the Riccati equation. Also,
the relation between the closed form of the Lainiotis filter
and the Fibonacci sequence is derived. Moreover, the
relation between the steady state Lainiotis filter and the
golden section is described. In addition a Finite Impulse
Response (FIR) implementation of the steady state
Lainiotis filter is proposed, where the coefficients of the
filter are related to the golden section. In Section 6
the relation between the Lainiotis filter, the Kalman filter
and the golden section is described, for the random walk
system. In Section 7 the scalar generic stochastic dynamic
system is considered and the relation between the system
parameters and the golden section is investigated. Finally,
Section 8 summarizes the conclusions.

2. Golden section

The ‘‘Golden Ratio’’ as a concept has a long history in
mathematics. Although the term ‘‘golden section’’ appears
in print for the first time by the German mathematician
Martin Ohm, the younger brother of the well-known
physicist George Simon Ohm, in a footnote in the 1835
second edition of Die Reine Elementar-Mathematik [6],
the mathematical concept of Golden Ratio traces back to
the famous Greek mathematician Euclid from Alexandria.
Particularly, Euclid’s Elements [7] (Greek: StoiwEia) pro-
vide the first known written definition of what is now
called the golden ratio in order to solve a geometrical
problem concerning the division of a line segment in
extreme and mean ratio. The definition is the following:
‘‘A straight line is said to have been cut in extreme and
mean ratio when, as the whole line is to the greater
segment, so is the greater to the less’’. We provide below
the essence of this geometrical problem: A line segment
AB must be divided with a point C into two parts so that
the ratio between the shorter part AC and the longer one
CB is equal to the ratio between the longer part CB and
the whole line segment AB, i.e.:

l¼
AC

CB
¼

CB

AB

Using the relationship AB¼ ACþCB we take:

l¼
AC

CB
¼

CB

AB
¼

CB

ACþCB
¼

CB=CB

AC=CBþCB=CB
¼

1

lþ1

Hence, the equation to calculate the ratio l is

l2
þl�1¼ 0 ð1Þ

with two roots:

l1,2 ¼
�17

ffiffiffi
5
p

2

The positive root of Eq. (1) is the so-called golden section:

a¼ �1þ
ffiffiffi
5
p

2
� 0:618 ð2Þ

The golden section has the following property:

1�a¼ a2 ð3Þ

The reciprocal of the golden section is the golden ratio. So,
the well-known number f (phi), the golden ratio, is given
as follows:

f¼
1þ

ffiffiffi
5
p

2
� 1:618 ð4Þ

The relations between the golden section and the golden
ratio are derived by (2) and (4) and are given below:

f¼
1

a ¼ 1þa ð5Þ

The golden section seems to appear in many of the
proportions of famous ancient buildings, such as the
Parthenon in Athens. Also the proportions of famous
paintings seem to be designed according to the golden
section, for example Botticelli’s Venus in the painting La
Primavera or Vergine delle Rocce created by Leonardo Da
Vinci. However, there is no original documentary evi-
dence that these buildings and paintings were deliber-
ately designed using the golden section.

The golden ratio has been of interest to mathemati-
cians, philosophers, architects but in the last decades
computer scientists and engineers have also concentrated
their work on this ratio. Recently, concerning the signal
processing research area, the relation between the dis-
crete time Kalman filter and the golden section is estab-
lished [4,5].

3. Fibonacci sequence

Fibonacci, an Italian born mathematician, discovered
his unique number sequence theory in around 1200 AD;
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the Fibonacci sequence, where the seed values are f 1 and
f 2 starting from two seeds values the f 1 ¼ 0 and f 2 ¼ 1, is
defined by recurrence by taking each subsequent number
as the sum of the two previous ones:

f nþ2 ¼ f nþ1þ f n, nZ1, and f 1 ¼ 0, f 2 ¼ 1 ð6Þ

Thus, the sequence of Fibonacci numbers is f0,1,1,
2,3,5,8,13,21,34,55,89,144, . . . ,g. It is well-known that the
Fibonacci sequence satisfies the limit properties [4]:

lim
n-1

f n
f nþ1

¼ a and lim
n-1

f nþ2

f nþ1

¼f ð7Þ

which provide the relation between the Fibonacci sequence
on the one side and the golden section and the golden ratio
on the other side. Today, it is believed that Fibonacci himself
did not even realize the connection of the Fibonacci
sequence to the golden ratio.

Fibonacci numbers seem to appear also in nature. For
example, many types of flowers have a Fibonacci number
of petals: daisies tend to have 34 or 55 petals, sunflowers
have 89 or 144. Similarly, the numbers of rings on the
trunks of palm trees and the scales on the surface of a
pineapple follow a sequence of Fibonacci numbers.
Recently, concerning the signal processing research area,
the relation between the discrete time Kalman filter and
the Fibonacci sequence is described [4,5].
4. Lainiotis filter

Consider the time invariant stochastic dynamic system
described by the following state space equations:

xðkþ1Þ ¼ FxðkÞþwðkÞ

zðkþ1Þ ¼Hxðkþ1Þþvðkþ1Þ ð8Þ

for k¼ 0,1, . . . , where xðkÞ is n� 1 state vector at time k,
zðkÞ is m� 1 measurement vector, F is n� n system
transition matrix, H is m� n output matrix, fwðkÞg,fvðkÞg
are independent Gaussian zero-mean white and uncorre-
lated random processes, Q is n� n plant noise covariance
matrix, R is m�m measurement noise covariance matrix,
and xð0Þ is a Gaussian random process with mean x0 and
covariance P0.

The filtering problem is to produce an estimate at time L

of the state vector using measurements till time L, i.e. the
aim is to use the measurements set fzð1Þ, zð2Þ, . . . , zðLÞg in
order to calculate an estimate value xðL=LÞ of the state
vector xðLÞ. The discrete time Lainiotis filter [9,10] is a well-
known algorithm that solve the filtering problem, by
computing the estimation xðk=kÞ at time k, and the corre-
sponding estimation error covariance matrix Pðk=kÞ such
that

Pðkþ1=kþ1Þ ¼ PnþFn½IþPðk=kÞOn�
�1Pðk=kÞFT

n ð9Þ

xðkþ1=kþ1Þ ¼ Fn½IþPðk=kÞOn�
�1xðk=kÞ

þðKnþFn½IþPðk=kÞOn�
�1Pðk=kÞKmÞzðkþ1Þ

ð10Þ

for k¼ 0,1, . . ., with initial conditions Pð0=0Þ ¼ P0, and
xð0=0Þ ¼ x0, where the following constant matrices are
calculated off-line:

A¼ ½HQHT
þR��1

Kn ¼QHT A

Km ¼ FT HT A

Pn ¼Q�QHT AHQ

Fn ¼ F�QHT AHF

On ¼ FT HT AHF ð11Þ

Recall that the covariance matrices Q ,R and Pðk=kÞ are
non-negative definite matrices; hereafter these matrices
are considered to be positive definite. Then, the existence
of the m�m symmetric matrix A¼ ½HQHT

þR��1 is guar-
anteed, when R is a positive definite ðR40Þ, which means
that no measurement is exact. This is reasonable in
physical problems. Moreover, the existence of
½IþPðk=kÞOn�

�1 is guaranteed due to the presence of the
identity matrix I and due to the facts that Pðk=kÞ40 and
On40, since A40.

Note that if the signal process system is asymptotically
stable (i.e. all the eigenvalues of F lie inside the unit
circle), then there exist a unique positive definite steady
state value Pe of the estimation error covariance matrix,
i.e. the estimation error covariance Pðk=kÞ tends to the
steady state estimation error covariance:

Pe ¼ lim
k-1

Pðk=kÞ ð12Þ

This steady state solution Pe can be calculated by
recursively implementing the Riccati equation emanating
from Lainiotis filter (10) with the initial condition
Pð0=0Þ ¼ P0. The steady state or limiting solution of the
Riccati equation is independent of the initial condition.

The steady state estimation error covariance matrix
satisfies the algebraic Riccati equation emanating from
Lainiotis filter:

Pe ¼ PnþFn½IþPeOn�
�1PeFT

n ð13Þ

The steady state estimation error covariance matrix
may exist even if the system is not asymptotically stable.

5. Lainiotis filter for the random walk system

Consider the random walk system, namely the scalar
(n¼ 1 and m¼ 1) stochastic dynamic system in (8) with
the transition and output coefficients equal to one,
F ¼ f ¼ 1 and H¼ h¼ 1:

xðkþ1Þ ¼ xðkÞþwðkÞ

zðkþ1Þ ¼ xðkþ1Þþvðkþ1Þ ð14Þ

and the process and measurement noise sources having
equal noise covariances

Q ¼ q¼ s2, R¼ r¼ s2: ð15Þ

Then the Lainiotis filter parameters by (11) are

A¼
1

2s2
, Kn ¼

1

2
, Km ¼

1

2s2
,

Pn ¼
1

2
s2, Fn ¼

1

2
, On ¼

1

2s2
ð16Þ
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In this section, we deal with the discrete time Lainiotis
filter and show how is related to the golden section as
well as to the Fibonacci sequence.

5.1. Lainiotis filter and the golden ratio

Substituting the values of parameters by (16) in (9)
and (10) the recursive form of the Lainiotis filter is
derived:

Pðkþ1=kþ1Þ ¼
s2þPðk=kÞ

2s2þPðk=kÞ
s2 ð17Þ

xðkþ1=kþ1Þ ¼
s2

2s2þPðk=kÞ
xðk=kÞþ

s2þPðk=kÞ

2s2þPðk=kÞ
zðkþ1Þ

ð18Þ

for k¼ 0,1, . . ., with initial conditions Pð0=0Þ ¼ P0, and
xð0=0Þ ¼ x0.

Moreover, the steady state value Pe of the estimation
error covariance can be calculated by solving the following
algebraic Riccati equation, resulting from (13) by substitut-
ing the values of Lainiotis filter parameters by (16):

P2
eþs

2Pe�s4 ¼ 0 ð19Þ

The unique positive solution of Eq. (19) is the steady state
estimation error covariance Pe and is related to the golden
section; in fact by (2) it is equal to the golden section times
the covariance s2:

Pe ¼
�1þ

ffiffiffi
5
p

2
s2 ¼ as2 ð20Þ

Moreover, we observe that the negative solution of
(19) is related also to the golden ratio:

�1�
ffiffiffi
5
p

2
s2 ¼�

1þ
ffiffiffi
5
p

2
s2 ¼�fs2

Thus, it has been shown that for the random walk
system, the steady state estimation error covariance of the
corresponding Lainiotis filter is related to the golden section.

5.2. Lainiotis filter and the Fibonacci sequence

The recursive form (open form) of Lainiotis filter
consists of the recursive equations (17) and (18). We are
able to derive the non-recursive form (closed form) of
Lainiotis filter from these equations. We are going to
show that for the random walk system, the coefficients of
the closed form of the Lainiotis filter are related to the
Fibonacci numbers.

The recursive equations of the Lainiotis filter (17) and
(18) can be written in the following closed form of the
Lainiotis filter:

Pðkþ1=kþ1Þ ¼
f 2kþ3s2þ f 2kþ2Pð0=0Þ

f 2kþ4s2þ f 2kþ3Pð0=0Þ
s2 ð21Þ

xðkþ1=kþ1Þ ¼
1

f 2kþ4s2þ f 2kþ3Pð0=0Þ

�

"
s2xð0=0Þþ

Xkþ1

i ¼ 1

ðf 2iþ1s2þ f 2iPð0=0ÞÞzðiÞ

#
ð22Þ
for k¼ 0,1, . . ., with initial conditions Pð0=0Þ ¼ P0, and
xð0=0Þ ¼ x0.

Proof. The proof of (21) is based on the induction
method. Using the definition of the Fibonacci sequence
by (6) and the recursive equation (17) for k¼ 0 we can
write

Pð1=1Þ ¼
s2þP0

2s2þP0
s2 ¼

f 3s2þ f 2P0

f 4s2þ f 3P0
s2

which satisfies (21).
Assume that the formula in (21) is true for k, then by

(17) we have

Pðkþ2=kþ2Þ ¼
s2þPðkþ1=kþ1Þ

2s2þPðkþ1=kþ1Þ
s2

In the last equation, substituting the assumption of the
induction and using the definition of Fibonacci sequence
by (6) we derive

Pðkþ2=kþ2Þ ¼

s2þ
f 2kþ3s2þ f 2kþ2P0

f 2kþ4s2þ f 2kþ3P0
s2

2s2þ
f 2kþ3s2þ f 2kþ2P0

f 2kþ4s2þ f 2kþ3P0
s2

s2

¼
ðf 2kþ3þ f 2kþ4Þs2þðf 2kþ2þ f 2kþ3ÞP0

ð2f 2kþ4þ f 2kþ3Þs2þð2f 2kþ3þ f 2kþ2ÞP0
s2

¼
f 2kþ5s2þ f 2kþ4P0

ðf 2kþ4þðf 2kþ4þ f 2kþ3ÞÞs2þðf 2kþ3þðf 2kþ3þ f 2kþ2ÞÞP0
s2

¼
f 2kþ5s2þ f 2kþ4P0

f 2kþ6s2þ f 2kþ5P0
s2

¼
f 2ðkþ1Þþ3s2þ f 2ðkþ1Þþ2P0

f 2ðkþ1Þþ4s2þ f 2ðkþ1Þþ3P0
s2

i.e. (21) holds also for kþ1, which completes the induc-
tion method for (21).

The proof of (22) is also based on the induction method.
In fact, for k¼ 0 the recursive equation (18) yields

xð1=1Þ ¼
1

2s2þP0
s2x0þ

s2þP0

2s2þP0
zð1Þ

¼
1

2s2þP0
½s2x0þðs2þP0Þzð1Þ�

¼
1

f 4s2þ f 3P0
½s2x0þðf 3s2þ f 2P0Þzð1Þ�

which satisfies (22).
Assume that the formula in (22) is true for k, then by

(18) we have

xðkþ2=kþ2Þ ¼
s2

2s2þPðkþ1=kþ1Þ
xðkþ1=kþ1Þ

þ
s2þPðkþ1=kþ1Þ

2s2þPðkþ1=kþ1Þ
zðkþ2Þ

In the last equation, substituting the assumption of the
induction and using (21) and the definition of Fibonacci
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sequence by (6) we derive

xðkþ2=kþ2Þ ¼
f 2kþ4s2þ f 2kþ3P0

ð2f 2kþ4þ f 2kþ3Þs2þð2f 2kþ3þ f 2kþ2ÞP0

�

(
s2

f 2kþ4s2þ f 2kþ3P0
x0þ

1

f 2kþ4s2þ f 2kþ3P0

�
Xkþ1

i ¼ 1

ðf 2iþ1s2þ f 2iP0ÞzðiÞ

)

þ
f 2kþ5s2þ f 2kþ4P0

f 2kþ6s2þ f 2kþ5P0
zðkþ2Þ

¼
s2

ðf 2kþ4þðf 2kþ4þ f 2kþ3ÞÞs2þðf 2kþ3þðf 2kþ3þ f 2kþ2ÞÞP0
x0

þ
1

ðf 2kþ4þðf 2kþ4þ f 2kþ3ÞÞs2þðf 2kþ3þðf 2kþ3þ f 2kþ2ÞÞP0

�
Xkþ1

i ¼ 1

ðf 2iþ1s2þ f 2iP0ÞzðiÞþ
f 2kþ5s2þ f 2kþ4P0

f 2kþ6s2þ f 2kþ5P0
zðkþ2Þ

¼
s2

f 2kþ6s2þ f 2kþ5P0
x0þ

1

f 2kþ6s2þ f 2kþ5P0

�
Xkþ1

i ¼ 1

ðf 2iþ1s2þ f 2iP0ÞzðiÞþ
f 2kþ5s2þ f 2kþ4P0

f 2kþ6s2þ f 2kþ5P0
zðkþ2Þ

¼
s2

f 2kþ6s2þ f 2kþ5P0
x0þ

1

f 2kþ6s2þ f 2kþ5P0

�

"Xkþ1

i ¼ 1

ðf 2iþ1s2þ f 2iP0ÞzðiÞþðf 2kþ5s2þ f 2kþ4P0Þzðkþ2Þ

#

¼
s2

f 2kþ6s2þ f 2kþ5P0
x0þ

1

f 2kþ6s2þ f 2kþ5P0

�
Xkþ2

i ¼ 1

ðf 2iþ1s2þ f 2iP0ÞzðiÞ

i.e. (22) holds also for kþ1, which completes the induc-
tion method for (22). &

Thus, it is obvious that for the random walk system,
the coefficients of the closed form of the Lainiotis filter are
related to the Fibonacci numbers and the relation
between the Lainiotis filter and the Fibonacci sequence
has been established by (21) and (22).

Remark 5.1. Notice that the estimation error covariance
converges to the steady state estimation error covariance
irrespective of the initial condition Pð0=0Þ ¼ P0. For every
kZ0 from (21) we have

Pðkþ1=kþ1Þ ¼
f 2kþ3s2þ f 2kþ2P0

f 2kþ4s2þ f 2kþ3P0
s2 ¼

f 2kþ3

f 2kþ4

s2þ
f 2kþ2

f 2kþ3

P0

s2þ
f 2kþ3

f 2kþ4

P0

s2

It is obvious that by (12) and (7) the above equality yields

Pe ¼ lim
k-1

Pðk=kÞ ¼ as
2þaP0

s2þaP0
s2 ¼ as2

5.3. Steady state Lainiotis filter and the golden section

The steady state Lainiotis filter for the random walk
system in (14) with the process and measurement noise
sources have noise covariances as in (15) takes advantage
of the a priori knowledge of the steady state estimation
covariance Pe by (20). Then, substituting the estimation
covariance Pðk=kÞ by the steady state estimation covar-
iance Pe ¼ as2 in (18) we have

xðkþ1=kþ1Þ ¼
1

2s2þas2
s2xðk=kÞþ

s2þas2

2s2þas2
zðkþ1Þ

¼
1

2þa xðk=kÞþ
1þa
2þa zðkþ1Þ ð23Þ

Using 1þa¼ 1=a from (5), we derive

1þa
2þa

¼
1þa

1þ1þa
¼

1=a
1þð1=aÞ

¼
1=a

ðaþ1Þ=a
¼

1

aþ1
¼ a

and

1

2þa
¼

1

1þ1þa
¼

1

1þð1=aÞ
¼

a
aþ1

¼ a2

Substituting the above quantities in (23) we derive the
recursive form of the steady state Lainiotis filter

xðkþ1=kþ1Þ ¼ a2xðk=kÞþazðkþ1Þ ð24Þ

for k¼ 0,1, . . ., with initial condition xð0=0Þ ¼ x0.
Thus, it becomes evident that the recursive form of the

steady state Lainiotis filter computes the state estimate
using a linear combination of the previous estimate and of
the current measurement with coefficients related to the
golden section.

Furthermore, for k¼ 0,1, . . ., and xð0=0Þ ¼ x0, the closed

form of the steady state Lainiotis filter can be derived:

xðkþ1=kþ1Þ ¼ a2ðkþ1Þxð0=0Þþ
Xkþ1

i ¼ 1

a2ðk�iÞþ3zðiÞ ð25Þ

Proof. The proof of (25) is based on the induction method.
In fact, for k¼ 0 we are able to write the recursive form

of the steady state Lainiotis filter in (24) as

xð1=1Þ ¼ a2xð0=0Þþazð1Þ

which satisfies (25).
Assume that the formula in (25) is true for k, then by

(24) and the assumption of induction we derive

xðkþ2=kþ2Þ ¼ a2xðkþ1=kþ1Þþazðkþ2Þ

¼ a2 a2ðkþ1Þxð0=0Þþ
Xkþ1

i ¼ 1

a2ðk�iÞþ3zðiÞ

" #
þazðkþ2Þ

¼ a2ðkþ2Þxð0=0Þþ
Xkþ1

i ¼ 1

a2ðk�iÞþ5zðiÞþazðkþ2Þ

¼ a2ðkþ2Þxð0=0Þþ
Xkþ2

i ¼ 1

a2ðk�iÞþ5zðiÞ

i.e. (25) holds also for kþ1, and hence for all kZ0. &

It becomes obvious that the steady state Lainiotis filter
computes the state estimate as a linear combination of the

initial state estimate and of all previous measurements with
coefficients, which are powers of the golden section.

5.4. FIR steady state Lainiotis filter and the golden section

Using the ideas in [2] for the scalar stochastic dynamic
system in (14) with q¼ r¼ s2 we are able to derive a FIR
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form of the steady state Lainiotis filter as

xðk=kÞ ¼
XN

i ¼ 1

a2ðN�iÞþ1zðiþk�NÞ ð26Þ

for k4N, where N such that

a2N oe ð27Þ

and e a small positive number.

Proof. Using the closed form of the steady state Lainiotis
filter in (25) for k4N we derive

xðk=kÞ ¼ a2kxð0=0Þþ
Xk

j ¼ 1

a2ðk�jÞþ1zðjÞ

¼ a2kxð0=0Þþ
Xk�N

j ¼ 1

a2ðk�jÞþ1zðjÞþ
Xk

j ¼ k�Nþ1

a2ðk�jÞþ1zðjÞ

¼ a2kxð0=0Þþ
Xk�N

j ¼ 1

a2ðk�jÞþ1zðjÞþ
XN

i ¼ 1

a2ðN�iÞþ1zðiþk�NÞ

ð28Þ

Note that the golden section has the property lim
N-1

a2N ¼ 0
due to ao1. Consequently, by (27) there exists an integer
N such that a2N oe, which means that we are able to
assume that aj ¼ 0, for every jZ2N, while aja0, jo2N.

The last property allows us to confirm that in (28) the
coefficient of xð0=0Þ tends to zero, since 2k42N, and all
the coefficients of zðjÞ of the first sum for 1r jrk�N tend
to zero, since 2ðk�jÞþ1Z2Nþ142N: Thus, it is obvious
that (28) yields (26). &

The proposed FIR implementation of the steady state
Lainiotis filter computes the state estimate as a linear
combination of a known number of the last measurements,
which are powers of the golden section a.

Table 1 summarizes the computational requirements
required for the computation of the estimate value xðk=kÞ

of the state variable at time k of all the Lainiotis filter
algorithms for the random walk system presented above.

An essential advantage of the FIR form of the steady
state Lainiotis filter is that the calculation burden does not
depend on the estimation time, leading to the reduction of
the computational time in comparison to the other algo-
rithms. The coefficients of the FIR form are powers of the
golden section and are computed off-line. Recall that only
N last measurements are required. The calculation burden
depends on the length N. In fact, a small value of N is
Table 1
Computational requirements of Lainiotis filter algorithms for the ran-

dom walk system.

Lainiotis filter (LF)

Algorithm

Equations Calculation burden

(scalar operations)

Order

Recursive form LF (17) and (18) 8k 8k

Closed form LF (21) and (22) 7kþ6 7k

Recursive form

steady state LF

(24) 3k 3k

Closed form steady

state LF

(25) 3kþ1 3k

FIR form steady state LF (26) 2N�1 2N
enough to give reliable estimates. This is confirmed
through the experiment where a random walk system
has been considered. Fig. 1 depicts the estimates xðk=kÞ

computed using the recursive form of the steady state
Lainiotis filter with initial condition xð0=0Þ ¼ 0 and the FIR
form of the steady state Lainiotis filter for N¼5. This
choice is rational (a10 ¼ 0:008131 is of the order of 10�3).
It is noticeable that the estimates are close to each other
(almost equivalent).
6. Lainiotis filter, Kalman filter and the golden section

In this section the relation between the Lainiotis filter
[3,9,10], the Kalman filter [1,8] and the golden section is
described for the random walk system in (14) with
q¼ r¼ s2 as in (15).

It is known that the Lainiotis filter is equivalent to the
Kalman filter [3]. Thus, for the random walk system both
filters provide the same estimates and the same estima-
tion error covariances. Of course they provide the same
steady state estimation error covariances as well.

From the Lainiotis filter equations the recursive Riccati
equation for the estimation error covariance, Pðk=kÞ,
formulates in (17): Pðkþ1=kþ1Þ ¼ ððs2þPðk=kÞÞ=ð2s2þ

Pðk=kÞÞÞs2.
The relation between the smoothing error covariance,

Pðk=kþ1Þ, and the estimation error covariance is obtained
by the Lainiotis filter equation Pðk=kþ1Þ ¼ ½Iþ
Pðk=kÞOn�

�1Pðk=kÞ, where substituting On by (16) arises:

Pðk=kþ1Þ ¼
2Pðk=kÞ

2s2þPðk=kÞ
s2 ð29Þ

Since Eq. (29) yields

Pðk=kÞ ¼
2Pðk=kþ1Þ

2s2�Pðk=kþ1Þ
s2 ð30Þ

combining (17) and (30) we are able to derive the
recursive Riccati equation for the smoothing error covar-
iance from (29) as follows:

Pðk=kþ1Þ ¼

2s2 s2þPðk�1=k�1Þ

2s2þPðk�1=k�1Þ
s2

2s2þ
s2þPðk�1=k�1Þ

2s2þPðk�1=k�1Þ
s2

¼ 2s2 s2þPðk�1=k�1Þ

5s2þ3Pðk�1=k�1Þ

¼ 2s2
s2þ

2Pðk�1=kÞ

2s2�Pðk�1=kÞ
s2

5s2þ3
2Pðk�1=kÞ

2s2�Pðk�1=kÞ
s2

¼ 2s2 2s2þPðk�1=kÞ

10s2þPðk�1=kÞ

Thus, the recursive Riccati equation for the smoothing
error covariance is given by

Pðk=kþ1Þ ¼
4s2þ2Pðk�1=kÞ

10s2þPðk�1=kÞ
s2 ð31Þ



Table 2
Steady state error covariances and golden section.

Error

covariance

Algebraic Riccati

equation

Steady state error

covariance

Smoothing P2
s þ8s2Ps�4s4 ¼ 0 Ps ¼ 2a3s2

Estimation P2
e þs2Pe�s4 ¼ 0 Pe ¼ as2

Prediction P2
p�s2Pp�s4 ¼ 0 Pp ¼

1
a s

2

0 10 20 30 40 50 60 70 80 90 100
−6

−5

−4

−3

−2

−1

0

1

2

3

4
Steady state Lainiotis filter

time k

es
tim

at
e 

x(
k/

k)
 fo

r S
S

LF
 a

nd
 F

IR
 S

S
LF

SSLF
FIR SSLF

Fig. 1. Estimates computed using the recursive form of the steady state Lainiotis filter and the FIR form of the steady state Lainiotis filter for N¼5.
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The relation between the prediction error covariance
Pðkþ1=kÞ, and the estimation error covariance, is obtained
by the equation Pðkþ1=kÞ ¼ FPðk=kÞFT

þQ of the Kalman
filter [3], where substituting F ¼ f ¼ 1, Q ¼ q¼ s2 arises:

Pðkþ1=kÞ ¼ Pðk=kÞþs2 ð32Þ

Combining (17) and (32) we are able to derive the recursive
Riccati equation for the prediction error covariance:

Pðkþ1=kÞ ¼
s2þ2Pðk=k�1Þ

s2þPðk=k�1Þ
s2 ð33Þ

By (29) and (32) it is easy to conclude that

Pðk=kþ1ÞoPðk=kÞoPðkþ1=kÞ ð34Þ

The relations in (34) mean that the smoothed value of
the state is better that the estimated one and that the
estimated value of the state is better that the predicted
one. The smoothing/estimation/prediction error covar-
iances tend to the corresponding steady state smooth-
ing/estimation/prediction error covariances Ps=Pe=Pp,
respectively. Of course, from the recursive Riccati equa-
tions in (17), (31) and (33) and using the relations in (3)
and (5) we are able to derive the corresponding algebraic
Riccati equations and their steady state solutions, which
are summarized in Table 2:

Ps ¼ lim
k-1

Pðk=kþ1Þ ¼ 2a3s2

Pe ¼ lim
k-1

Pðk=kÞ ¼ as2

Pp ¼ lim
k-1

Pðkþ1=kÞ ¼
1

as
2

By the three above equalities it is easy to conclude that

PsoPeoPp

It is clear that in the special case q¼ r¼ s2 ¼ 1, we have

Ps ¼ 2a3oPe ¼ aoPp ¼
1

a

It is apparent that for the random walk system in (14)
and (15), the steady state smoothing/estimation/prediction
error covariances emanating from Lainiotis and Kalman
filters are related to the golden section, as depicted in
Table 2.

7. Lainiotis filter for the scalar generic stochastic
dynamic system

Consider the scalar generic stochastic dynamic system
in (8) with the transition coefficient F ¼ f and output
H¼ h

xðkþ1Þ ¼ fxðkÞþwðkÞ

zðkþ1Þ ¼ hxðkþ1Þþvðkþ1Þ



(i)

(ii)
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for k¼ 0,1, . . ., and the process and measurement noise
sequences with covariances given by Q ¼ q and R¼ r,
respectively, with q40 and r40. Then the Lainiotis filter
parameters by (11) are

A¼
1

qh2
þr

, Kn ¼
qh

qh2
þr

, Km ¼
fh

qh2
þr

,

Pn ¼
qr

qh2
þr

, Fn ¼
rf

qh2
þr

, On ¼
f 2h2

qh2
þr

ð35Þ

The aim of this section is to investigate for which
values of the parameters f ,h,q,r the steady state Lainiotis
filter is related to the golden section a.

Substituting the values of the parameters by (35) in (9)
and (10), the recursive form of the Lainiotis filter is derived:

Pðkþ1=kþ1Þ ¼
qr

qh2
þr
þ

r2f 2

ðqh2
þrÞðqh2

þrþ f 2h2Pðk=kÞÞ
Pðk=kÞ

ð36Þ

xðkþ1=kþ1Þ ¼
rf

qh2
þrþ f 2h2Pðk=kÞ

xðk=kÞ

þ
qh

qh2
þr
þ

rf 2hPðk=kÞ

ðqh2
þrÞðqh2

þrþ f 2h2Pðk=kÞÞ

 !
zðkþ1Þ

ð37Þ

for k¼ 0,1, . . ., with initial conditions Pð0=0Þ ¼ P0, and
xð0=0Þ ¼ x0.

Note that there always exists a unique positive steady
state value Pe of the estimation error covariance, i.e. the
estimation error covariance Pðk=kÞ tends to the steady
state estimation error covariance Pe, which can be calcu-
lated by recursively implementing the Riccati equation
emanating from Lainiotis filter (36) with initial condition
Pð0=0Þ ¼ P0. Furthermore, the steady state value Pe of the
estimation error covariance satisfies the corresponding
algebraic Riccati equation:

f 2h2P2
eþðqh2

þr�rf 2
ÞPe�qr¼ 0 ð38Þ

Notice that the discriminant D¼ ðqh2
þr�rf 2

Þ
2
þ4qrf 2h2

is a positive number, thus the real roots of (38) exist
always and its unique positive root is given by

Pe ¼
�ðqh2

þr�rf 2
Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqh2
þr�rf 2

Þ
2
þ4qrf 2h2

q
2f 2h2

ð39Þ

The steady state Lainiotis filter for the scalar generic
stochastic dynamic system takes advantage of the a priori
knowledge of the steady state estimation covariance Pe

by (39). Then, substituting the estimation covariance
Pðk=kÞ by the steady state estimation covariance Pe in
Eq. (37), the recursive form of the steady state Lainiotis filter

is derived:

xðkþ1=kþ1Þ ¼
rf

qh2
þrþ f 2h2Pe

xðk=kÞ

þ
qh

qh2
þr
þ

rf 2hPe

ðqh2
þrÞðqh2

þrþ f 2h2PeÞ

 !
zðkþ1Þ ð40Þ

for k¼ 0,1, . . ., with initial condition xð0=0Þ ¼ x0.
The relation between the steady state estimation error

covariance Pe, the parameters f ,h,q,r and the golden
section a is presented in the following supposing that
holds:

0oa q

r
h2o1 ð41Þ

In fact, the following relations are equivalent:
Pe ¼
r

h2
a ð42Þ
f 2
¼

r�aqh2

ra2
ð43Þ
Proof. (i)) (ii) Equating the forms of Pe by (39) and (42)
we takeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqh2
þr�rf 2

Þ
2
þ4qrf 2h2

q
¼ 2arf 2

þqh2
þr�rf 2

ð44Þ

The right part of (44) is positive, since it is written

ð2a�1Þrf 2
þqh2

þr¼ a3rf 2
þqh2

þr

due to 2a�1¼ a�a2 ¼ að1�aÞ ¼ a3. Hence, the form of f 2

in (43) is derived directly by (44). It is obvious that f 240
due to inequality in (41).

(ii) ) (i) Substituting f 2 by (43) in (39) the estimation
error covariance Pe in (42) directly arises. &

Thus, it has been shown that for the scalar generic
stochastic dynamic system, the steady state estimation
error covariance Pe is related to the golden section, under
the assumption that the parameters f ,h,q,r are related to
the golden section a with the relation in (43).

In the special case where the inequality in (41) holds,
substituting the quantities Pe,f 2 by (42) and (43) in (40)
and using (5), the special recursive form of the steady state

Lainiotis filter is derived:

xðkþ1=kþ1Þ ¼ a2fxðk=kÞþ
a
h

zðkþ1Þ ð45Þ

for k¼ 0,1, . . ., with initial condition xð0=0Þ ¼ x0.
Thus, it has been shown that for the scalar generic

stochastic dynamic system, the corresponding steady
state Lainiotis filter is related to the golden section, under
the assumption that the parameters f ,h,q,r are related to
the golden section a with the relation in (45).

Remark 7.1. It is clear that the Lainiotis filter as well as
the steady state Lainiotis filter for the scalar stochastic
dynamic system presented in Section 5 is verified. In fact,
for the values of parameters f ¼ h¼ 1 and q¼ r¼ s2 the
recursive form of the Lainiotis filter in (36) and (37) takes
the form in (17) and (18).

Obviously, the choice of parameters h¼ 1 and q¼ r¼ s2

satisfies the inequality in (41) and gives Pe ¼ as2, as in
(20); in this case, from (43) arises f 2

¼ 1 and choosing
f ¼ 1 the special recursive form of the steady state
Lainiotis filter in (45) takes the form in (24).

Furthermore, in the special case where the inequality
in (41) and the equivalent relations in (42) and (43) hold,
the special closed form of the steady state Lainiotis filter is



Table 3
Relationship between the Lainiotis filter, the golden section and the

Fibonacci numbers.

Lainiotis filter algorithm Relation to

Closed form Lainiotis filter Fibonacci numbers

Recursive form Lainiotis filter Golden section

Recursive form steady state Lainiotis filter Golden section

Closed form steady state Lainiotis filter Golden section

FIR steady state Lainiotis filter Golden section
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derived for k¼ 0,1, . . .

xðkþ1=kþ1Þ ¼ ða2f Þkþ1xð0=0Þþ
a
h

Xkþ1

i ¼ 1

ða2f Þk�iþ1zðiÞ ð46Þ

Proof. It is easy to see that for k¼ 0 the special recursive
form in (45) is written as

xð1=1Þ ¼ a2fxð0=0Þþ
a
h

zð1Þ,

which satisfies (46).
By induction, supposing that Eq. (46) holds for k, then

by (45) we derive

xðkþ2=kþ2Þ ¼ ða2f Þxðkþ1=kþ1Þþ
a
h

zðkþ2Þ

¼ ða2f Þ ða2f Þkþ1xð0=0Þþ
a
h

Xkþ1

i ¼ 1

ða2f Þk�iþ1zðiÞ

" #
þ
a
h

zðkþ2Þ

¼ ða2f Þkþ2xð0=0Þþ
a
h

Xkþ2

i ¼ 1

ða2f Þðkþ1Þ�iþ1zðiÞ

i.e. (46) holds also for kþ1, and hence for all kZ0. &

It becomes obvious that, when the inequality in (41)
and one of two equivalent relations in (42) and (43) hold,
the steady state Lainiotis filter computes the state esti-
mate as a linear combination of the initial state estimate

and of all previous measurements with coefficients, which
are related to the golden section a.

Finally, following the methodology used for the deri-
vation of the FIR steady state Lainiotis filter in Section 5,
in the special case where the inequality in (41) and the
equivalent relations in (42) and (43) hold, we are able to
derive the special FIR form of the steady state Lainiotis filter

for the scalar generic stochastic dynamic system as

xðk=kÞ ¼
a
h

XN

i ¼ 1

ða2f ÞN�izðk�Nþ iÞ ð47Þ

for k4N, where N such that

ða2f ÞN oe ð48Þ

and e a small positive number.

Proof. Using the special closed form of the steady state
Lainiotis filter in (46) for k4N we derive:

xðk=kÞ ¼ ða2f Þkxð0=0Þþ
a
h

Xk

j ¼ 1

ða2f Þk�jzðjÞ

¼ ða2f Þkxð0=0Þþ
a
h

Xk�N

j ¼ 1

ða2f Þk�jzðjÞþ
a
h

Xk

j ¼ k�Nþ1

ða2f Þk�jzðjÞ

¼ ða2f Þkxð0=0Þþ
a
h

Xk�N

j ¼ 1

ða2f Þk�jzðjÞþ
a
h

XN

i ¼ 1

ða2f ÞN�izðk�Nþ iÞ

ð49Þ

Using the assumption 0oaðq=rÞh2o1 by (41) and the
relation f 2

¼ ðr�aqh2
Þ=ra2, it becomes clear that the
quantity a2f has the property limN-1ða2f ÞN ¼ 0 due to

9a2f 9¼ a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�aqh2

ra2

s
¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

aqh2

r

s
o1:

Consequently, by (48) there exists an integer N such that
ða2f ÞN oe, which means that we are able to assume that
ða2f Þj ¼ 0, for every jZN, while ða2f Þja0, joN: The last
property allows us to confirm that in (49) the coefficient
of xð0=0Þ tends to zero, since k4N, and all the coefficients
of zðjÞ of the first sum for 1r jrk�N tend to zero, since
k�jZN: Thus, it is obvious that (49) yields (47). &

In the case where the inequality in (41) and the
equivalent relations in (42) and (43) hold, the special
FIR implementation of the steady state Lainiotis filter
computes the state estimate as a linear combination of a
known number of the last measurements with coefficients,
which are powers of the golden section a.

8. Conclusions

The relation between the discrete time Lainiotis filter
on the one side and the golden section and the Fibonacci
sequence on the other side is established.

Consider the random walk system, i.e. the scalar
stochastic dynamic system with the transition and output
coefficients equal to one. It is shown that the Lainiotis
filter computes the state estimate using a linear combina-
tion of the previous estimate and of the current measure-
ment with coefficients related to the Fibonacci numbers.
Furthermore, it is pointed out that the steady state
estimation error covariance is related to the golden
section. It is also shown that the recursive form of the
steady state Lainiotis filter computes the state estimate
using a linear combination of the previous estimate and
the current measurement with coefficients related to the
golden section, while the non-recursive form of the steady
state Lainiotis filter computes the state estimate as a
linear combination of the initial state estimate and of all
previous measurements with powers of the golden sec-
tion as coefficients.

A FIR implementation of the steady state Lainiotis filter
is also proposed, where the filter computes the state
estimate as a linear combination of a well-defined set of
the last measurements with coefficients which are powers
of the golden section.

Table 3 summarizes the relationship between the
Lainiotis filter, the golden section and the Fibonacci
numbers for the scalar stochastic dynamic system. Thus,
it becomes evident that for the scalar stochastic dynamic
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system the Lainiotis filter is fully governed by the golden
section and the Fibonacci sequence.

Concerning to the scalar generic stochastic dynamic
system the relation between the parameters and the
golden section was investigated. Results analogous to
those for the scalar stochastic dynamic system were
derived under the assumption that the parameters are
related to the golden section with a specified relation.
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